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ON &-ESCAPE IN A LINEAR MANY-PERSON DIFFERENTIAL GAME 
WITH INTEGRAL CONSTRAINTS* 

P. B. GUSIATNIKOV and E. 2. MOKHON'KO 

A criterion of guaranteed evasion from contact with an estimate not tending to zero 
as l-_-t= is derived for a linear many-person differential game with integral 
constraints. The possibility is proved of l-escape and of 1, -escape in a broad 
class of linear differential games. The paper borders on the studies in /l-88/. 

1. Let the motion of a vector z in an fl-dimensional Euclidean space fi be governed by 
the vector differential equation 

dzldt:mCz-u-&v, UEP, VEQ (1.1) 

Here C is a constant nth-order square matrix, u = u(t) is the control vector of pursuer U, 

u = u(t) is the control vector of evader V, P and Q are linear subspaces in R, dim Q :;X. 

Finite measurable vector-valued functions u(t) and u (t) square summable in modulus on each 
finite interval and satisfying the relations 

L I 
\Iu(s)12ds<<2, ~(v(S)12ds<Y, u(t)EP, v(l)EQ, p = const>O, CJ = corlst>O (1.2) 

0 II 

for each t>U are everywhere called the controls of the players (of the evader and the 

pursuer, respectively). Suppose that a terminal set XI has been prescribed in R, being the 

union of linear subspaces ilfi (i = I,..., m). The pursuer's purpose is to take point z(t) onto 

the terminal set I%Y; the evader's purpose is to guarantee evasion from set M. We say /l/ 

that the many-person differential game (1.1) with integral constraints has been defined by all 

the data listed. 

Definition. We say that I,-escape is possible in game (1.1) if for any initial 

state z0 = z(O)= 8 \ nf the escaper, knowing all the data describing game (1.1) and the values 

of 2 (s), SE IO. tl and of u(t) at each instant t, can construct, for any pursuer's control 
u* = {u(t), t> 0) his own control V* = {,,,(t) t >OO) so as to ensure the estimate 

P (2 (I)) > 2 (I) (1.3) 

for t > 0, where l(t)>U (t E (0, t_ m)) is a function dependent only on game (1.1) and independ- 

ent of 20, such that l(t)-+ 30 as t-i- v; 0 (z) = dist(z,nl) is the distance from point z to 

set b1. 
An estimate of type (1.3) is called a guaranteed estimate. If for game (1.1) numbers 

I>0 and 8 >O exist such that 

1 (1) ‘-. 1, t .> 8 (1.4) 

in the presence of estimate (1.3), then we say that an l -escape obtains. 

For the I-escape problem posed in /2/ necessary and sufficient conditions have been 

obtain /3,4/ for stationary differential games with geometric constraints. For many-person 

games with integral constraints the first guaranteed estimate was obtained in /5/(in/5/ inthe 
general case l(t)-O,t-+ cu. but the l-escape problem still was not solved). In the present 

paper, for a sufficiently broad class of linear differential games, it is proved that I,- 
escape is possible under the fulfillment of Conditions l-4 (see Sect.2 below) and, as an 

obvious corollary, so is 1 -escape (1, -escape corresponds to the possibility of guarantee- 

ing the evader an evasion of the terminal set by any preassigned distance 1, i.e., an l- 
escape in which number 1 now is independent of game (1.1)). 

ByLi we denote the orthogonal complement to :lfi in I<. Weassume thatdim l,i --:;(i 1.. ..m) 
and we fix three-dimensional subspaces CZ'i c I,i (i -1, . ., m) and a three-dimensional space 

Q*c_ Q. By nr (i : 1, .,RL), sr,and sI* we denote orthogonal projections operators from I< onto 

wi, P and Q*, respectively; by q)(r) WC denote the matrix e"'; by 11 U/I WC denote the norm 

of linear operator H; by K we denote the unit sphere in Q*. 

2: Let us formulate the escape conditions. 

Condition 1. All eigenvalues of matrix Care real. 

Condition 2. For each i- I,..., m there exist nonsingular constant linear operators 
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Ai acting from Q* onto Wi and continuous functions 6i (t) 20 nonnegative on IO, +-m) such that 

irid, (t)n* ZE 6i (t)A$* (2.1) 

It is well known /6/ that in this case each of the functions 6i (t) is a quasipolynomial 

6, (t) = eh:' PI' (t) + . . . + e+ Lq (t) (i = 1, . . . , m) (2.2) 

in which hli > A,'>. . . >$' are the eigenvalues of matrix C. while the degree of each of 

the polynomials Pjt(t) is less by one (or more) than the multiplicity of eigenvalue hj'* 

Condition 3. For each i = 1, . . ., m, hc > 0 for the quasipolynomial fji (t) given by 

Condition 2. 

We set 
vi (I^) LY 11 Ai-'si d, (r) Tl* 111 r > 0, Hi (t, z) = .4i%id, (t) 2, t>o,zER 

Lemma 1 j7/. If in the quasipolynomial h (t) = e h*f Pr (d) + . . . + t?k’P~ (t) all hi (i =I, . 
.,k) are real, while the degree of each of the polynomials Pi (t) equals si (i =I, . . ..k). respect- 

ively, then h(t) has no more that k- 1 +sl -t . . . + sir zeros on the real axis. 

By virtue of this lemma and ofcondition 1, for each i =I,..., m a number Ni <n exists 

such that the number of zeros of the scalar function (e.Hi (t,z)) on the semiaxis t E IO, + m) 
does not exceed Ni for fixed ZE R and eEK (to prove this it is enough to note that (e.Hi (t. 

z)) is a quasipolynomial of type (2.2)). 

Lemma 2. (cf. Lemma 1 in /l/). For any fixed z E R there exists a vector e(z)E K 
such that 

1 Hi (t, Z) - he (2) I > I L 1 / r (NI, . . ., N,), i = 1, . . ., m! t E [O, + co) (2.3) 

-r/s F (N,, . . 
for all real A. 

, lvn,) = 18,&vi -f 22 

Condition 4. 

Let 

i=l,,,,, m r~zsm, IQ w r (Nl, . . . * NJ /b (r) = p E (‘9 F) max (2.4) 

(0 (t) = (1 + t)-‘, t>O, Li(t)=S6i(t-S)"(s)ds, L(t)= min (L,(t), . . . , L,(t)) 
0 

Lemma 3. If condition 3 is fulfilled, then L(t)-+ + M as t-t + CO. 

Proof. Obviously, it is sufficient to verify that L, (t) - + m as t- + 03. 
the degree of polynomialPi(t),i.e., 

Let1 q be 

P: (I) = Alfq + . . . + AI. Since lit > a', > . . . > A:,, h1 (1) [A&~I’~-I -t i 
as t--too. Consequently, AZ>0 and 'r>, i exists such that the inequality 

61 (t)>V*A)>/llpA~* e+ > ‘Is A: 
is fulfilled for all t>tr (in the last inequality we used the fact that 1:>,0). For t>tr we 
have 

3. Theorem. Let Conditions l-4 be fulfilled for game (1.1). Then l,-escape is 
possible in game (1.1). 

Proof. By the Cauchy formula we have 

ni-7 (t) = nio (t ) ZO + 5 n<‘D (t-7 S) [V (S) - u (S)] ds = 
II 

Ai Hi (f, 2,) + \ 6i (t - S) A~v (S) ds - 5 TX,@ (t -S) u (S) CIS 

II 0 

Applying the operator Ai-l to both sides of this equality, we obtain 

1 A~‘Tc;z(~)) > 1 Hi (t, ZO) + i 6, (t -s)u (s) ds I -illi (t-s) IU (s) Ids 
(3.1) 

0 0 

Let the constant A>0 be such that 

IL=~/(P+A) (3.2) 

By Lemma 2 a vector e,=e(z,) exists such that estimate (2.3) is valid for all i=l,..., m (when 

z = ZJ. We set 

v (s) = --IL% (I u (s) I + AW (s)), s 2 0 

Then for any control U* of player IJ 
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(3.3) 

so that the integral constraint is fulfilled. In addition, by virtue of (2.3) and (2-4) 

Thexefore, inequality (3.1) yields the estimate 

by virtue of Lemma 3. The theorem is proved. 

4. As an example we consider the escape problem for one pursued object y whose motion 
is specified by the linear vector differential equation 

y{") + a@-') + . . . $- ah_y = ?_J (4.11 

from 112 pursuing objects Si(i =I,. _.,m) each of whose motions is specified by the equation 

(4.2) 

In ~QITIIU~~S (4.1) and (4-2) Uj (i = 3,...,kf and bji(] = I,... $Jeir i = I,.., m) are real numbers, 
u, ui, y,xi are v-dimensional vectors in a Euclidean space E (dim E F-+ >33), ui and u are con- 
trol parameters subject to the constraints (for each t > 0) 

The pursuit is considered ended when 

p (t) = i=ytl,l m I Ici Ct) - Y (t) I = 0 
8 > 

Let us verify Conditions 1-4 for problem j4.1)- (4.31_ BY 8 (tf we denote a solution 
of the homogeneous scalar differential equation 

&h') + al/$"'-0 + _ . _ + ai,6 =: (i I4.4) 

with initial. condition 

6 (0) = 6' (0) == . I , = &h-z> (0) = 0, do+1) ((j) z 1 
14.5) 

By yi (t) we denote a solution of the equation 

_+bi) & b; y Crim31 + . * A- brc,‘y = 0 l3.6) 

yi (0) = JQr (0) zcz , . . z fy (0) = 0, y(“-l-‘) (0) -= 1 (4.7) 

Reducing problem {4.1)--- (4.3) in 
that Condition 1 takes the form 

standard fashion (see /B/f to the linear g=e (l-1) f We get 

Condition L*, All eigenvalues of Eqs.f$,$f and (4.6) are real. 
It is well known /6/ that in this case the function S(t) does not vanish on (0, $. w), 

Condition 2 is automatically fulfilled, and 6i (t) z / 6 (t) [ {i = 1, ~ ..,vI), while transformation 
Ai coincides to within sign with the identity transformation. Finally, the function Yi (t) 

introduced in Sect.2 coincides with the modulus of the function yi (5)just introduced. The 
scalar function(e.Hi (t,zO)) is the difference between the solutions of differential Eq. (4.4) 
and of one of Eqs. (4.61, in connection with which it has, by Lemma 1, no more than k $- ki - 
1 = Ni zeros. Conditions 3 and 4 turn into the following. 

Condition 2*. One of the eigenvalues of Eq, (4.4) is nonnegative. 

Condition 3*. 

Let us derive a simple criterion ensuring the finiteness of number P (and, consequently, 
guaranteeing, when Conditionsl*and 2* axe fulfilled, the possibility of I,-escape when the 

ratio 81~ is sufficiently large). 

Lemma 4, Let k < ki (i =1. ,...+f and for each t: let the largest eigenvaiue of Eq. (4.6) 
not exceed the largest eigenvalue of Eq. (4.4) (and( in case they coincide,let the multiplicity 
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of the first not exceed that of the second). Then F<+W. 

The computation of constant ~1 for an analog of Pontriagin’s check example 

Xi” + cwi’ = ZLi (i = I,... tm),~“+Py’=u,q,y,~~, uEE,dimE>3, w>O, B>O 
with constraints (4.3) yields 

36m _1- 22 
P== max max {1,/3/ai) 

i=l, . . ..m 

Conditions l* and 2* are trivially verified. 

5. We present an example showing that l-escape may be absent in a game with integral 

constraints. Consider the "child and crocodile" problem: 

+C= 
*" = u .T Iu(S)IZds<P*, y’ = “, 

c 
I v (s) I2 ds < @, (5, y, u, v E E, dim E > 2) 

(5.1) 

0 i 

with a terminal set defined by the condition z= Y. Escape is possible in problem (5.1) /5/ 

with an estimate of type (1.3), and 1(2)-O as r--k$-. Let us show that Z-escape is impos- 

sible in game (5.1). The proof is by contradiction. Let I.,>0 and initial data .Q= s(O), Y, = 

~(O),sb= z'(O) exist for which the evader can, by using his own information, ensure the inequal- 

ity 
I = 0) - Y (t) I z I, > 0 (5.2) 

for all sufficiently large t (for definiteness, for t>O). We set 

x = p%-a ( x = fi (1 - z-y, 8, = (xx)-“’ 

We assume that the pursuer plays the game in cycles (the i -th cycle starts at instant Ti and 

ends at instant Ti+l = T, + Bi which is the starting instant of the next cycle; T,=O). At 

the start of the i -th cycle the pursuer determines the quantities 

ri Ti 
piz= p2- Iu(s)f2ds>0, 

s 
Gi2 = 62 - 

s 
I” (s) 12 ds > 0 

0 0 

specifies the duration 0i>2e, of the cycle so as to ensure the inequality 

1 ‘i 1 5 &2-“-’ Cp @i)v ri = Y (Ti) - z ( Ti) - Biz’ ( Ti), ‘p (s) = (s + 1) log (S + 1) - s 

(this is obviously possible for a sufficiently large ei ) I and sets his own 

whole cycle equal to 

A direct calculation convinces us that 

Ti+l 

s u (s) ds = Qi+l = 1/ (Ti+l) - z (Ti+l) 
Tj+l --2eo 

so that by virtue of (5.2) 

Ti+l 
si* - 5;+l > s I 0 (s) 12ds 2 I qi+, l*/(‘~ 

‘“= ) > - 
Ti+l-Wo 

0 ’ 2% 

(5.3) 

(5.4) 

control over the 

(5.5) 

(5.6) 

Let us verify that by such a method the pursuer (under the condition that the evader 

observes his own integral constraint, which is obligatory) has fulfilled the inequalities 

i-l 

pi~>Si%O1 
%= ' 

i=i,Z,..., ui = + j-J (i - 2-y 
j=o 

(5.7) 

which leads to a contradiction between (5.3) and (5.6) (we would have a*>11:(2%)-~ for all i* 
which is absurd) and completes the proof. Indeed, for i= 1 inequality (5.7) is obvious. 
Henceforth we argue by induction. If (5.7) is fulfilled for a number i, then by definition 

(5.5) and inequality (5.4) 

pt - @:+I < (@-l + E;' (UT - '7;+1)"r)z< p:2-+1 + 2E;2(o: _ U;+l) 

in connection with which 
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as required (here we have used the nonnegativity of the expression within the brackets and 

the inequality 0: > afA1). 
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